Data acquisition and pilot study on BioRxiv and MedRxiv full text data to facilitate comprehensive data mining on biomedical literature

> A project funded by Elizabeth Blackwell Institute Rapid Research Call

Yi Liu IEU Programme 3 meeting 15 August 2023

Elizabeth Blackwell Insititute for Health Research

bristol.ac.uk/blackwell 🔰 @EBIBristol

Background

- The proposed project idea originated from our earlier work ASQ (Liu & Gaunt, 2022)
- We scraped and analysed MedRxiv abstracts from 2020-01-01 to 2021-12-31
- Limits:
 - Web scraping 24 months of *just* abstracts was time consuming
 - MedRxiv API only keeps one version of metadata
- We have known BioRxiv / MedRxiv kept full text data for text mining

bristol.ac.uk/blackwell

9 @EBIBristol

medRxiv preprint doi: https://doi.org/10.1101/2022.04.12.22273803; this version posted May 23, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a cC-BY 4.0 International license .

Triangulating evidence in health sciences with Annotated Semantic Queries

- ³ Yi Liu^{1,*} and Tom R Gaunt^{1,2,*}
- 4 MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- 5 ²NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
- 6 corresponding authors

7 ABSTRACT

Integrating information from data sources representing different study designs has the potential to strengthen evidence in population health research. However, this concept of evidence Triangulation² presents a number of challenges for systematically identifying and integrating relevant information. We present ASQ (Annotated Semantic Queries), a natural language query interface to the integrated biomedical entities and epidemiological evidence in EpiGraphDB, which enables users to extract 'claims' from a piece of unstructured text, and then investigate the evidence that could either support, contradict the claims, or offer additional information to the query. This approach has the potential to support the rapid review of pre-prints, grant applications, conference abstracts and articles submitted for peer review. ASQ implements strategies to harmonize biomedical entities in different taxonomies and evidence from different sources, to facilitate evidence triangulation and interpretation. ASQ is openly available at https://asg.epigraphdb.org.

1 Introduction

Researchers in health sciences are encouraged to seek multiple strands of complementary evidence to minimise the risk of bias creating false positives. This has been referred to as the *triangulation*¹ of evidence, which may combine results from different study designs with different sources of bias, including from established findings in the literature. Platforms which offer a portal to integrated heterogeneous data such as Open Targets² and EpiGraphDB³ are highly valuable sources which have the potential to support evidence triangulation by integrating evidence with relevant information from a range of dedicated data providers, including biomedical rontologies¹⁶, genetic associations⁶ and literature-derived evidence⁷. One of the main objectives for the web integrated sources in order to facilitate the fast navigation and discovery of evidence. However, there is a need to improve accessibility of data, transforming source data into comprehensible evidence and knowledge regarding a research question. There are several challenges in order for these issues to be addressed, such as: how can a research question be represented so that evidence. An extrement of triangulation how should we integrate binmed.

- This is a seedcorn funding project funded by the Elizabeth Blackwell Institute 2023 Rapid Research Call to us (**Yi Liu**, Tom Gaunt)
- We proposed to acquire the full text data of BioRxiv and MedRxiv preprints and conduct pilot studies on the acquired data
- Data and results from this project will lead to our next stage projects involving cross-Faculty collaborations (in progress)
- Code on processing and analysis https://github.com/mrcieu/biorxivmedrxiv-tdm

- 05-31 Award confirmed; 06-08 Budget code generated;
- 06-09 -- 06-23 Tried to sort out payment mechanisms
 - Finance; IT; Finance; Procurement; AWS; Procurement
- 06-26 -- 06-29 AWS access setup;
 Data transfer from S3 to epi-franklin
- 07-01 -- 07-31 Exploratory analysis
- 07-01 -- 07-17 GDPR compliance check;
- 07-19 -- 07-27 Contact ACRC on purchasing RDSF;
- 07-02 -- 07-27 Setting up MyERP things (requisition, purchase order, etc.) to get the invoice paid
- 08-02 -- ... Chasing Finance to get the invoice paid

yment mechanisms

- Why didn't I ...
- Set up AWS things sooner?
 - Need to appropriately set up University procurement / payment process
 - Need experiments on costs with small batches
- Contact ACRC sooner?
 - GDPR compliance check on individual identifiable information

Lessons

- Should have asked around for prior experiences & lessons more

- Via API: 1) List of submitted preprints based on a query time interval 2) metadata on individual preprint
- Via web scraping, based on the doi known from metadata
- Via full text data archives
 - Hosted on as AWS S3 Requester Pays buckets -- Requester pays for the costs associated with the data transfer
 - BioRxiv s3://biorxiv-src-monthly; MedRxiv s3://medrxiv-src-monthly

Amazon AWS

- Root user: University invoice account
 - MFA by a Google Authenticator ©
- IAM user: sub-user specific for S3 access
- Could reuse for future projects
- Originally budgeted for
 - Transferring and storing on our buckets
 - Trasnferring out of AWS
 - 15T per month, two months

 Traffics on 4.5T + experiment batches of data access

Acquired Dataset

iedi

du -sh 4.3T biorxiv/ 216M examples/ 305G medrxiv/ tree -L 1 biorxiv medrxiv biorxiv

— Back_Content

Current_Content

medrxiv

Back_Content

Current_Content

ee -L 1 medrxiv/Current_Content xiv/Current_Content April_2021 April_2022 April_2023 August_2021 August_2022 December_2020 December_2020 February_2021 February_2022 February_2023 January_2022 January_2023 July_2021 July_2021 July_2022 March_2022 March_2023 March_2023 March_2023	<pre>> tree -L 1 medrxiv/Current_Content/May_2023 head -20 medrxiv/Current_Content/May_2023</pre>
May_2022	

A data archive

k18445@sscm-franklin2.cse.bris.ac.uk:\$/d/i/p/b/data/local-source-data/biorxiv/Current_Content/April_2020				
Back_Content	April_2019	0a0be6aa-6ce9-1014-a73c-cba5fe580abc.meca		
Current_Content	April_2020	0a3bd842-6fae-1014-935a-cf7d7d807662.meca		
	April_2021	0a285ccc-6c51-1014-8ed1-934969bea46e.meca		
	April_2022	0a365fbb-6c30-1014-90a9-a3a6a18c377d.meca		
	April_2023	0a32503f-6eb0-1014-bd7e-9ea79c949194.meca		
	August_2019	0a958632-6cc5-1014-9b63-9aedefe64693.meca		
	August_2020	00c3f700-6c71-1014-ae83-df6e6cea9c6c.meca		
	August_2021	0a3e2212-6f2d-1014-aace-c74e8e70808f.meca		
	August_2022	0a6bfcbe-6fe6-1014-8c6c-82282ffdaabe.meca		
	December_2018	0a13cfb5-6f34-1014-bacb-9f41581ecc9b.meca		
	December_2019	0a14e56d-6c8d-1014-a4d5-9c0892437914.meca		
	December_2020	0a63d9ca-6d26-1014-be46-dd00dac7e462.meca		
	December_2021	0a2394cd-6da5-1014-bb25-fae9579eefb0.meca		
	December_2022	0ac0f608-6c98-1014-a6e8-b5765352ccd6.meca		
	February_2019	0adc7b63-6d37-1014-b185-e3e3e744f963.meca		

ik18445@sscm-fra	nklin2.cse.bris.ac.uk:#/	/d/i/p/b/d/1/e/0a9a5225-6c3e-1014-b429-f3eaae354361/content
0a2ef310-6c~		225656.pdf
0a3e547c-6c~	directives.xml	225656.xml
0a9a5225-6c~	manifest.xml	225656_fig1.tif
0a797d56-6c~	mimetype	225656_fig2.tif
0c1a93e7-6c~	transfer.xml	225656_tbl1.tif
1c135323-6c~		
1d7e60e6-6c~		
24887b80-6c~		
0a2ef310-6c~		
0a3e547c-6c~		
0a9a5225-6c~		
0a797d56-6c~		
0c1a93e7-6c~		
1c135323-6c~		
1d7e60e6-6c~		
24887b80-6c~		

<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Archiving and Interchange DTD v1.2d1 2 0170631//EN" "JATS-archivearticle1.dtd"> <article xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"</pre> xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" article-type="article" dtd-version="1.2d1" specific-use="production" xml:lang="en"> <front> ciournal-motas <journal-id journal-id-type="publisher-id">BIORXIV</journal-id> <journal-title-group> <journal-title>bioRxiv</journal-title> <abbrev-journal-title abbrev-type="publisher">bioRxiv</abbrev-journal-title> </journal-title-group> <publisher> <publisher-name>Cold Spring Harbor Laboratory</publisher-name> </publisher> </journal-meta> <article-meta> <article-id pub-id-type="doi">10.1101/225656</article-id> <article-version>1.1</article-version> <article-categories> <subj-group subj-group-type="author-type"> <subject>Regular Article</subject> </subi-aroup> <subj-group subj-group-type="heading"> <subject>New Results</subject> </subj-group> <subj-group subj-group-type="hwp-journal-coll"> <subject>Microbiology</subject> </subj-group> </article-categories> <title-aroup> sarticle-title>Drug repurposing for yellow fever using high content screening</article-title> </title-group>

EDA: Volume

- The separation occurred in mid 2019
- Black line: 2020-02-01
- Red line: 2020-05-01

EDA: Categories, BioRxiv

bristol.ac.uk/blackwell **9** @EBIBristol

EDA: Categories, MedRxiv

Top 15 categories + Others

Most populous categories:

- Epidemiology
- Infectious Diseases (execpt HIV/AIDS)
- Public and **Global Health**

EDA: revisions

	num_versions	count					doi	num_versions
0) 1	177751	10	11	13	0	10.1101/2020.07.09.20143164	26
1	2	43092	11	12	5	1	10.1101/290825	25
	2	40002				2	10.1101/066423	19
2	2 3	11806	12	13	3	3	10.1101/016840	19
3	4	3328	13	14	1	4	10.1101/2020.05.26.104687	16
4	5	999	14	15	2			
5	6	374		10	-			
6	5 7	146	15	16	1			
7	, 8	58	16	19	2			
-		0.5	17	25	1			
8	9	35	17	20	•			
9	10	13	18	26	1			

EDA: Topic analysis

BERTopic

- Done on Google Colab in ~1 hour (20 mins init, 20 mins model fit, 20 mins analysis)
- Topics from titles
- No preprocessing

[12] from bertopic import BERTopic

[13] topic_model = BERTopic(min_topic_size=35, verbose=True) topics, _ = topic_model.fit_transform(df["title"].to_list())

Downloading ()e9125/.gitattributes: 100%	1.18k/1.18k [00:00<00:00, 33.3kB/s]
Downloading ()_Pooling/config.json: 100%	190/190 [00:00<00:00, 13.3kB/s]
Downloading ()7e55de9125/README.md: 100%	10.6k/10.6k [00:00<00:00, 320kB/s]
Downloading ()55de9125/config.json: 100%	612/612 [00:00<00:00, 45.2kB/s]
Downloading ()ce_transformers.json: 100%	116/116 [00:00<00:00, 8.37kB/s]
Downloading ()125/data_config.json: 100%	39.3k/39.3k [00:00<00:00, 493kB/s]
Downloading pytorch_model.bin: 100%	90.9M/90.9M [00:00<00:00, 325MB/s]
Downloading ()nce_bert_config.json: 100%	53.0/53.0 [00:00<00:00, 3.37kB/s]
Downloading ()cial_tokens_map.json: 100%	112/112 [00:00<00:00, 6.60kB/s]
Downloading ()e9125/tokenizer.json: 100%	466k/466k [00:00<00:00, 1.92MB/s]
Downloading ()okenizer_config.json: 100%	350/350 [00:00<00:00, 20.6kB/s]
Downloading ()9125/train_script.py: 100%	13.2k/13.2k [00:00<00:00, 728kB/s]
Downloading ()7e55de9125/vocab.txt: 100%	232k/232k [00:00<00:00, 1.45MB/s]
Downloading ()5de9125/modules.json: 100%	349/349 [00:00<00:00, 10.5kB/s]

```
freq = topic_model.get_topic_info()
freq
```

	Topic	Count	Name	Representation	Representative_Docs
0	-1	141048	-1_covid19_for_and_the	[covid19, for, and, the, of, to, in, on, with,	[An Unsupervised Learning Method for Disease C
1	0	3605	0_drosophila_melanogaster_larval_mushroom	[drosophila, melanogaster, larval, mushroom, w	[Identification of Microbiota-Induced Gene Exp
2	1	2549	1_sarscov2_transmission_seroprevalence_2020	[sarscov2, transmission, seroprevalence, 2020,	[An integrated analysis of contact tracing and
3	2	2305	2_biodiversity_ecological_forest_species	[biodiversity, ecological, forest, species, cl	[Predicting coexistence in experimental ecolog
4	3	2160	3_gut_microbiota_microbiome_fecal	[gut, microbiota, microbiome, fecal, intestina	[Genetics of human gut microbiome composition,
1006	1005	35	1005_myocarditis_pericarditis_myopericarditis	[myocarditis, pericarditis, myopericarditis, r	[Systematic review of spontaneous reports of m
1007	1006	35	1006_lipidomics_lipidomic_batl_lipidome	[lipidomics, lipidomic, batl, lipidome, lipidl	[BATL: Bayesian annotations for targeted lipid
1008	1007	35	1007_cdc42_cytokinesis_gefs_polarity	[cdc42, cytokinesis, gefs, polarity, pak1depen	[A novel interplay between GEFs orchestrates C
1009	1008	35	1008_japan_declaration_tokyo_testingisolation	[japan, declaration, tokyo, testingisolation,	[Interim estimation for the effect of the thir
1010	1009	35	1009_egfr_egf_epidermal_crossconservation	[egfr, egf, epidermal, crossconservation, down	[Single EGF mutants unravel the mechanism for

topic_model.get_topic(-1)

```
[('covid19', 0.0010036547552193563),
('for', 0.0009881032695176456),
('and', 0.000983067659642955),
('the', 0.0009795698563111266),
('of', 0.000975412825242444),
('to', 0.0009715365303141605),
('in', 0.000956200428659259),
('on', 0.0009529458489471976),
('with', 0.0009451296541405764),
('from', 0.0009329334366575781)]
```

topic_model.get_topic(0)

[('drosophila', 0.04944922119078785), ('melanogaster', 0.02600333219223589), ('larval', 0.005590239439452415), ('mushroom', 0.0049347742511025965), ('wing', 0.004475129523336172), ('olfactory', 0.003962517347463073), ('flies', 0.0038724102058763934), ('suzukii', 0.0037570194657399834), ('adult', 0.0036421584365652804), ('fly', 0.003383645800590048)]

topic_model.get_topic(1)

```
[('sarscov2', 0.01813446682184406),
('transmission', 0.00829385784658454),
('seroprevalence', 0.0062970073461358494),
('2020', 0.006149735262666744),
('concern', 0.00533943029702636),
('surveillance', 0.005330693738371139),
('spread', 0.005168875294245271),
('b117', 0.005042158495342891),
('infection', 0.004969304993161452),
('2021', 0.00493603442912085)]
```


Hierarchical Clustering

626_ventilation_ventilator 435 tocilizumab sarilumab p.

Topics over Time

- Write a blog about the project
- Put the text data into use, with collaboration projects
- Topics
 - Use the scientific text to train language models
 - Appropriate use of clustering methods to analyse research topics
 - What factors lead to successful publication of a biomedical preprint?
 - Assessment of risk-of-bias on preprints
- Questions, comments, suggestions welcome!

Acknowledgement

This work was supported by the Elizabeth Blackwell Institute for Health Research, University of Bristol, with funding from Research England's quality-related (QR) award to the University of Bristol

This work was also carried out in the UK Medical Research Council Integrative Epidemiology Unit (MC_UU_00032/03).

Elizabeth Blackwell Insititute for Health Research