





# EpiGraphDB-ASQ as a natural language interface to biomedical knowledge graph

RSE workshop in data & Al workshop, 16 Febuary 2023

Yi Liu

MRC Integrative Epidemiology Unit, University of Bristol



#### whoami





Senior research associate in health data science, MRC Integrative Epidemiology Unit, University of Bristol

Data mining epidemiological relationship programme (Programme Lead: Professor Tom Gaunt)

- Lead EpiGraphDB working group
- Architect and lead developer on EpiGraphDB platform and components
- Data mining and knowledge discovery with knowledge graph and machine learning methods































- Previous research projects
  - The EpiGraphDB knowledge graph
  - The BlueBERT-EFO model
- ASQ as a natural language interface
  - Entity harmonization
  - Evidence groups
  - Evidence prioritization

#### Triangulating evidence in health sciences with Annotated Semantic Queries

- 3 Yi Liu<sup>1,\*</sup> and Tom R Gaunt<sup>1,2,\*</sup>
- <sup>4</sup> MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- <sup>5</sup> NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
- 6 \*corresponding authors

#### 7 ABSTRACT

Integrating information from data sources representing different study designs has the potential to strengthen evidence in population health research. However, this concept of evidence 'rirangulation' presents a number of challenges for systematically identifying and integrating relevant information. We present ASQ (Annotated Semantic Queries), a natural language query interface to the integrated biomedical entities and epidemiological evidence in EpiGraphDB, which enables users to extract "claims" from a piece of unstructured text, and then investigate the evidence that could either support, contradict the claims, or offer additional information to the query. This approach has the potential to support the rapid review of pre-prints, grant applications, conference abstracts and articles submitted for peer review. ASQ implements strategies to harmonize biomedical entities in different taxonomies and evidence from different sources, to facilitate evidence triangulation and interpretation. ASQ is openly available at https://asq.epigraphdb.org.

#### 1 Introduction

triangulation of evidence, which may combine results from different study designs with different sources of bias, including from established findings in the literature. Platforms which offer a portal to integrated heterogeneous data such as Open Targets<sup>2</sup> and EpiGraphDB<sup>3</sup> are highly valuable sources which have the potential to support evidence triangulation by integrating evidence with relevant information from a range of dedicated data providers, including biomedical ontologies for genetic associations and literature-derived evidence? One of the main objectives for the web interface of such integrated data platforms is to present users with focused information from various integrated sources in order to facilitate the fast navigation and discovery

Researchers in health sciences are encouraged to seek multiple strands of complementary evidence to minimise the risk of bias creating false positives. This has been referred to as the

Liu, Gaunt., 2022 MedRxiv

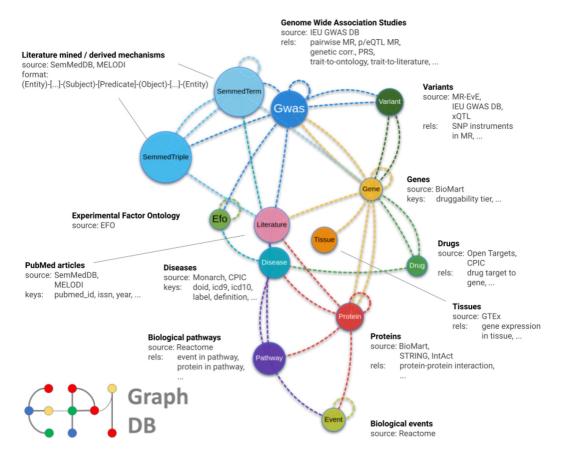






#### Previous work #1: the EpiGraphDB platform

Liu, et al., Gaunt., 2021 Bioinformatics






#### Graph DB EpiGraphDB







#### EpiGraphDB v1.0

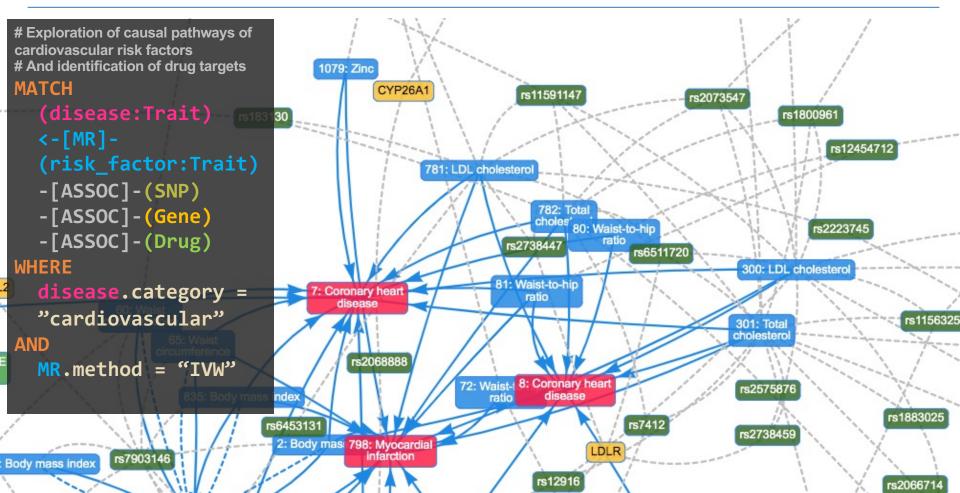
# nodes: 9,995,580

# edges: 204,943,810

# node types: 12

# edge types: 38

Integrated epidemiological evidence http://docs.epigraphdb.org

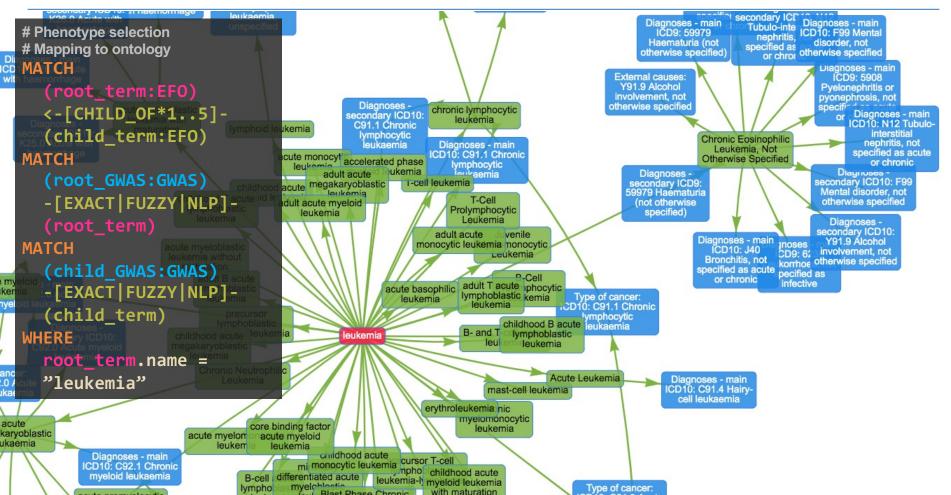

- Causal relationships
- Association relationships
- Molecular pathways
- Literature mined / derived evidence
- Others



#### EpiGraphDB query example





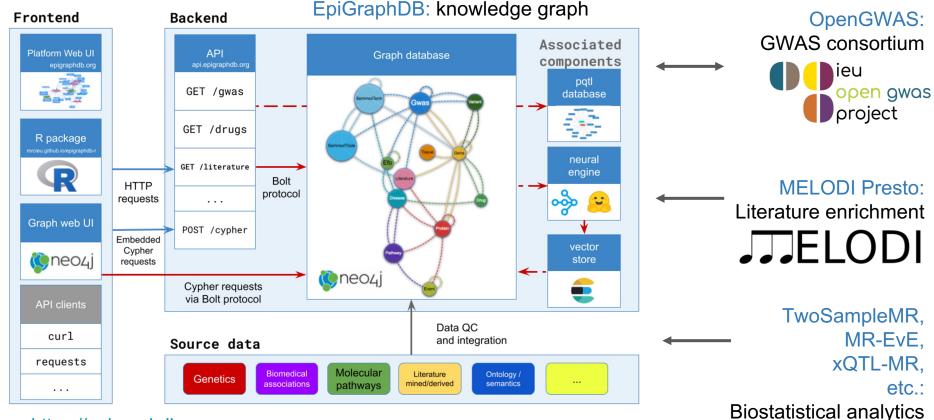





#### EpiGraphDB query example










#### EpiGraphDB and IEU health data science







https://epigraphdb.org

Yi Liu

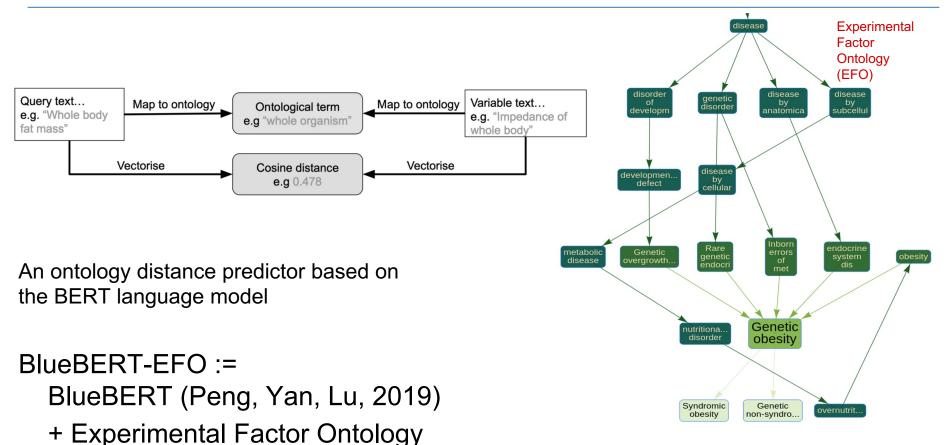
https://github.com/mrcieu/epigraphdb







#### Previous work #2: Trait Mapping


Liu, Elsworth, Gaunt, 2022 BioRxiv, Using language model and ontology topology to perform semantic mapping of traits between biomedical datasets



#### Previous #2: Trait mapping









#### ML training





Training data:
 Experimental Factor Ontology

- EFO as a graph
- Pairwise distance of ontology terms
  - Shortest distance between two nodes
  - Self distance of a node of its synonyms
- Finetuning a transformer language model with a sequence classification task

#### cancer-related condition

f http://purl.obolibrary.org/obo/MONDO 0045054 園 Copy

Search EFO

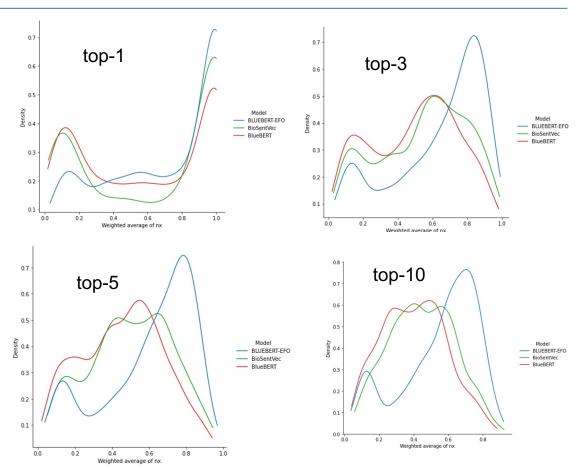
A disorder either associated with an increased risk for malignant transformation (e.g., intraepithelial neoplasia, leukoplakia, dysplastic nevus, myelodysplastic s develops as a result of the presence of an existing malignant neoplasm (e.g., paraneoplastic syndrome). [NCIT: C8278]

Synonyms: problem/condition, cancer-related cancer-related condition cancer related problem/condition cancer-related problem or condition problem/condition, cancer related cancer related

|    | trait                                               | efo_term                                               | pred     | target | diff     |
|----|-----------------------------------------------------|--------------------------------------------------------|----------|--------|----------|
| 0  | Malignant mesothelioma                              | mesothelioma                                           | 1.000238 | 1.0    | 0.000238 |
| 1  | Metabolite levels                                   | metabolite measurement                                 | 0.999371 | 1.0    | 0.000629 |
| 2  | Tyrosine levels                                     | tyrosine measurement                                   | 1.000991 | 1.0    | 0.000991 |
| 3  | Butyrylcholinesterase levels                        | butyrylcholinesterase measurement                      | 0.998593 | 1.0    | 0.001407 |
| 4  | Hypertension (SNP x SNP interaction)                | hypertension                                           | 1.001603 | 1.0    | 0.001603 |
| 5  | Optic disc area                                     | optic disc area measurement                            | 0.998011 | 1.0    | 0.001989 |
| 6  | Esophageal cancer (alcohol interaction)             | esophageal carcinoma                                   | 1.003343 | 1.0    | 0.003343 |
| 7  | Obsessive-compulsive disorder or autism spectr $\\$ | obsessive-compulsive disorder, autism spectrum         | 0.995708 | 1.0    | 0.004292 |
| 8  | Vestibular neuritis                                 | vestibular neuronitis                                  | 0.995653 | 1.0    | 0.004347 |
| 9  | Nonalcoholic fatty liver disease                    | non-alcoholic fatty liver disease                      | 1.004780 | 1.0    | 0.004780 |
| 10 | Pit-and-Fissure caries                              | pit and fissure surface dental caries                  | 0.995210 | 1.0    | 0.004790 |
| 11 | White matter lesion progression                     | white matter lesion progression measurement            | 1.004839 | 1.0    | 0.004839 |
| 12 | Prostate cancer (SNP x SNP interaction)             | prostate carcinoma                                     | 0.993228 | 1.0    | 0.006772 |
| 13 | Large artery stroke (TOAST classification)          | large artery stroke                                    | 0.993190 | 1.0    | 0.006810 |
| 14 | Pulse pressure (dietary potassium intake inter      | pulse pressure measurement, dietary potassium $\ldots$ | 0.992917 | 1.0    | 0.007083 |
| 15 | Schizophrenia or cigarettes per day (pleiotropy)    | schizophrenia, cigarettes per day measurement          | 1.008028 | 1.0    | 0.008028 |
| 16 | Hypersomnia (HLA-DQB1*06:02 negative)               | hypersomnia                                            | 0.991550 | 1.0    | 0.008450 |
| 17 | Prostate cancer (early onset)                       | prostate carcinoma                                     | 0.991139 | 1.0    | 0.008861 |
| 18 | Hemoglobin concentration                            | hemoglobin measurement                                 | 1.012157 | 1.0    | 0.012157 |
| 19 | Niacinamide levels                                  | niacinamide measurement                                | 0.987777 | 1.0    | 0.012223 |



#### Semantic phenotype harmonization






Ontology classifier (BlueBERT-EFO) based on Transformer language model greatly improved relevancy of candidate retrieval

Trait-to-Trait relationships predicted by BlueBERT-EFO resemble their corresponding representation in the ontology

Serves as the basis of entity harmonization in evidence triangulation

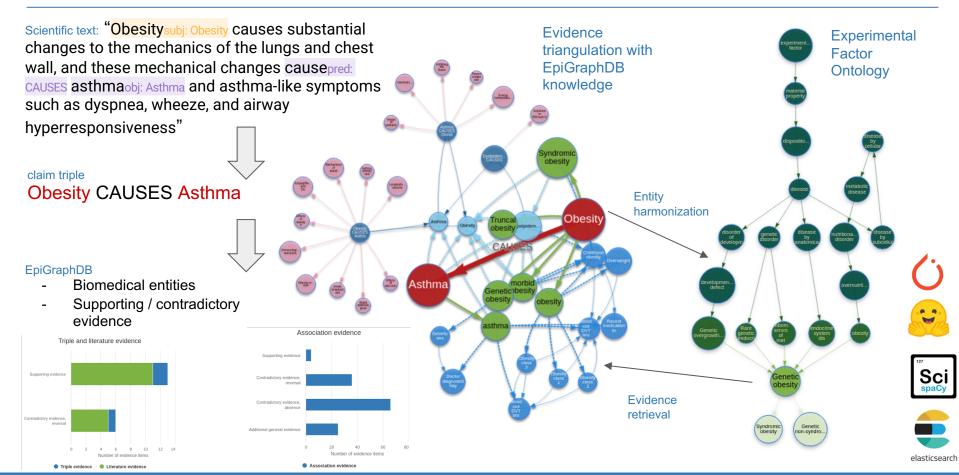








### EpiGraphDB-ASQ (Annotated Semantic Queries, ASQ)


Liu, Gaunt, 2022 MedRxiv, Triangulating evidence in health sciences with Annotated Semantic Queries



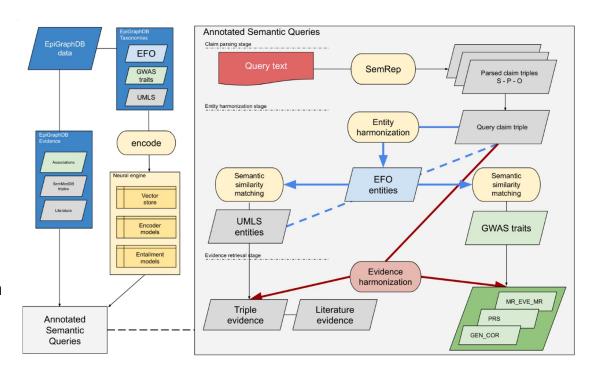
#### ASQ: Fact checking scientific claims










#### Annotated Semantic Queries (ASQ)





#### "Fact checking" biomedical claims

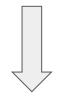
- EpiGraphDB curated knowledge
- Entity harmonization
- Evidence harmonization
- Evidence groups w.r.t. type of the evidence (e.g. literature, statistics)
- Evidence groups w.r.t. the claim (supporting, contradictory, etc.)





#### Graph From free text to structured entities






- Named entity recognition: SemRep (Kilicoglu et al., 2020 BMC Bioinformatics)
- Syntax: (Subject) [PREDICATE] (Object)
  - Glucose TREATS Diabetes
  - Obesity CAUSES Asthma
- Subjects / objects:
   UMLS Metathesaurus terms
- Predicate:
   UMLS Semantic network
   relationships

scientific text: "Obesitysubj: Obesity causes substantial changes to the mechanics of the lungs and chest wall, and these mechanical changes causepred: CAUSES asthmaobj: Asthma and asthma-like symptoms such as dyspnea, wheeze, and airway hyperresponsiveness"

claim triple

**Obesity CAUSES Asthma** 





#### **Entity harmonization**







Ontology entities

query entity

Cosine similarity

mapping by vector search (SciSpaCy + Elasticsearch)

filter by ontology distance 1st stage retrieved candidates

> 50

target candidate

candidate

candidate

candidate

candidate

target

target

target

target

target candidate target candidate

target

target

target

target

target

candidate

candidate

candidate

candidate

target candidate

candidate

target candidate

target candidate

BlueBERT-EFO identity score

Ontology information content score

2nd stage < 10

target candidate

target candidate

target candidate

target candidate

target candidate

(BlueBERT-EFO)



#### Graph Evidence entities and groups





#### From claim triple to triangulatable evidence

#### Triple and literature evidence group

- Semantic SemMedDB triples derived from literature
- Source literature
- EpiGraphDB entities:
  - (LiteratureTerm)
  - (LiteratureTriple)
  - (Literature)

#### Association evidence group

- Systematic statistical analysis results
- EpiGraphDB entities
  - (Gwas) (OpenGWAS)
  - [MR\_EVE\_MR] (Hemani et al)
  - [PRS] (Richardson et al)
  - [GEN\_COR] (Neale Lab)
- Common properties: beta, se, p-val



#### Evidence types w.r.t the claim



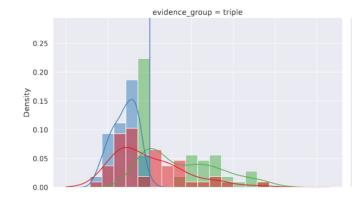


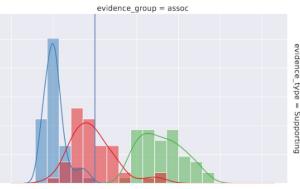
- **Supporting evidence**: *sufficiently* supports the claim
- **Reversal evidence**: *sufficiently* contradicts the claim from reversal direction
- **Insufficient evidence**: scope of evidence identification
- Additional evidence: additional information for expert knowledge

|                                                | Supporting                         | Reversal                        | Insufficient                   | Additional              |  |  |  |  |  |  |
|------------------------------------------------|------------------------------------|---------------------------------|--------------------------------|-------------------------|--|--|--|--|--|--|
|                                                |                                    | Directional predicates          |                                |                         |  |  |  |  |  |  |
|                                                | CAU                                | USES, TREATS, PRODUCES,         | AFFECTS                        |                         |  |  |  |  |  |  |
| Triple and literature                          | $S-P \rightarrow O$                | O-P 	o S                        | N/A                            | N/A                     |  |  |  |  |  |  |
| Association                                    | $S-P \rightarrow O, P_P-Value < 7$ | $	au O-P 	o S, P_P-Value < \pi$ | $S-P 	o O, P_P-Value \geq \pi$ | non-directional $S-P-O$ |  |  |  |  |  |  |
| Non-directional predicates                     |                                    |                                 |                                |                         |  |  |  |  |  |  |
| INTERACTS_WITH, COEXISTS_WITH, ASSOCIATED_WITH |                                    |                                 |                                |                         |  |  |  |  |  |  |
| Triple and literature                          | S-P-O                              | N/A                             | N/A                            | N/A                     |  |  |  |  |  |  |
| Association                                    | $S-P-O$ , $P_P-Value < \pi$        | N/A                             | $S-P-O$ , $P_P-Value \geq \pi$ | N/A                     |  |  |  |  |  |  |



#### Graph DB Evidence strength and prioritization

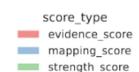



$$P_{\mathsf{mapping}} = \prod_{j} \max_{j} \left( S_{\mathsf{query} o \mathsf{EFO}_{j}} imes S_{\mathsf{EFO}_{j} o \mathsf{evidence}} \right),$$

 $i \in [\mathsf{subject}, \mathsf{object}]$ 

$$P_{\mathsf{T\&L.}} = 1 + log_{10}N_{\mathsf{literature}}$$
  $P_{\mathsf{Assoc.}} = \max\left(0, 1 + \log_{10}\left|\frac{\beta}{\sigma}\right|\right)$   $E_{\mathsf{T\&L.}} = P_{\mathsf{mapping}} \times P_{\mathsf{T\&L.}}$   $E_{\mathsf{Assoc.}} = P_{\mathsf{mapping}} \times P_{\mathsf{Assoc.}}$ 






Strength of an individual evidence to the claim

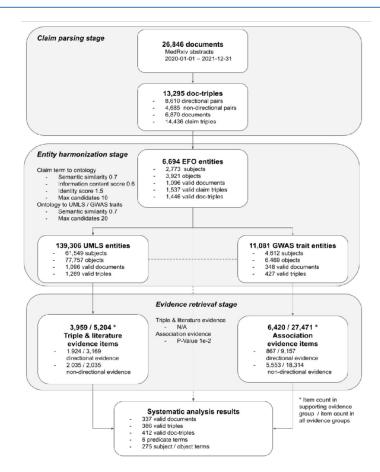
- Semantic similarity of the evidence entities to claim entities
- Strength of the evidence per se

Aggregated into the strength of an evidence group to compare with other evidence groups



Metrics should NOT

replace in depth investigations

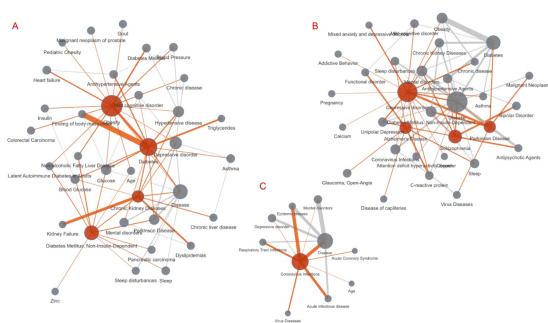



#### Graph Systematic analysis





- We parsed abstracts of medRxiv submissions from 2020 - 2021
- Automated using the batchprocessing capability of ASQ
- Available
   <u>https://asq.epigraphdb.org/medrxiv-</u>
   analysis






#### Graph Systematic analysis, contd







| Claim term                            | Supporting    |      |        | Λnv | Init. |
|---------------------------------------|---------------|------|--------|-----|-------|
| Ciaiiii teriii                        | T&L. + Assoc. | T&L. | Assoc. | Any | mat.  |
| Disease                               | 41            | 74   | 44     | 77  | 715   |
| Obesity                               | 20            | 25   | 25     | 30  | 125   |
| Diabetes                              | 17            | 19   | 18     | 20  | 87    |
|                                       | 14            | 20   | 16     | 26  | 100   |
| Depressive disorder Parkinson Disease | 13            | 13   | 13     |     | 111   |
|                                       |               |      |        | 13  |       |
| Diabetes Mellitus, Non-Insulin-       | 10            | 12   | 12     | 15  | 84    |
| Dependent                             | 0             | 10   | •      | 40  |       |
| Alzheimer's Disease                   | 8             | 10   | 8      | 10  | 111   |
| Schizophrenia                         | 8             | 11   | 8      | 11  | 32    |
| C-reactive protein                    | 7             | 7    | 9      | 10  | 24    |
| Malignant Neoplasms                   | 7             | 8    | 15     | 19  | 100   |
| Chronic Kidney Diseases               | 6             | 9    | 6      | 9   | 35    |
| Chronic disease                       | 5             | 6    | 5      | 6   | 44    |
| Fatigue                               | 5             | 5    | 6      | 6   | 25    |
| Sleep                                 | 5             | 5    | 6      | 6   | 21    |
| Atrial Fibrillation                   | 5             | 6    | 6      | 9   | 57    |
| Pain                                  | 4             | 4    | 6      | 6   | 30    |
| Glucose                               | 4             | 5    | 4      | 6   | 20    |
| Blood Glucose                         | 4             | 5    | 4      | 5   | 15    |
| Hypertensive disease                  | 4             | 12   | 4      | 13  | 90    |
| Mental disorders                      | 4             | 8    | 4      | 10  | 42    |
| Cardioembolic stroke                  | 3             | 3    | 3      | 3   | 14    |
| Testosterone                          | 3             | 5    | 3      | 6   | 21    |
| Diabetes Mellitus                     | 3             | 4    | 5      | 6   | 25    |







## Thank you for listening. Questions & comments welcome.

#### DMER programme and EpiGraphDB working group

- Tom Gaunt
- Benjamin Elsworth
- Pau Erola
- Valeriia Haberland
- Jie Zheng
- Marina Vabistsevits
- Oliver Lloyd

- DMER programme <a href="https://biocompute.org.uk">https://biocompute.org.uk</a>
- EpiGraphDB platform <a href="https://epigraphdb.org">https://epigraphdb.org</a>
- EpiGraphDB-ASQ <a href="https://asq.epigraphdb.org">https://asq.epigraphdb.org</a>